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Abstract

A
Thisa report describes the development of an. alternate formulation of the QD

digital filter using matrix-vector notation apd methods. The objectives of the
report are to clarify the concepts on which- the filter is based and to briefly
indicate the structural sifailarity of the QD and Kalman filters as well as the
difference between them. The technique for inserting into QD observed derivative
data obtained independently of the normal input observations is briefly described.
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A Matrix-Vector Formulation of the OD Digital Filter

Introduction

In July 1967 the writer developed a new, more general formulation of a
very efficient type of real-time digital filter and called it the "QD Filter". (A)
Actually, the structures of the computational formulas for the first and second
order QD filters were not new. As early as 1957,(2)(3) for example, workers in
radar engineering developed the well-known OC-8 digital filter which is used
primarily to predict estimates of position coordinates. The a-8 filter is com-
parable to a first-order QD type of filter. Then in 1964 J. J. Lynn (4) developed
a second-order filter with three coefficients a,8, and Y ,analytically determined
to attain the optimum trade-off between distortion of the true input information
and attenuation of the corrupting noise inharent in the input data. The QD
formulation, in contrast to these earlier developments, is 1puch more general
because it is based on ap N-th order polynominal fit of a span of input data points,
subject to the least-squares error criterion and intercept and slope constraints.
Exhaustive experiments have shown that the performances of the second and third
order QD filters are essentially the same as the respectivelperformances of the
equivalent classical constrained least-squares filters.

The minimal computing time required by the QD filter is independent of the
point span length. Because of this computational efficiency, the second-order
QD filter is now implemented in a variety of computer programs 'for filtering
radar data at White Sands Missile Range, e.g., the real-time program for flight-
safety support of PERSHING missile overflights. The third-order version has
been used experimentally and displays negligible'"velocity lag" error in velocity
estimates obtained from radars observing a missile during its thrusting periods.
It is understood that Lynn's c,8,y digital filter has been used in similiar real-
time computer programs at the Eastern Test Range.

It has been observed that the QD computational formulas have the same general
stxucture as those of the discrete Kalman Filter. This similarity is quite natural
because both filters are recursive. Otherwise, they are so different that the QD
filter can not be considered as a special case of the Kalman filter, which will be
quite apparent to readers who are familiar with the Kalman theory.

The original QD filter development employed classical summation (scalar)
notation which was extremely tedious for the reader to follow. It is hoped that
this new development using matrix-vector notation presented in the following
chapters will be clearer and facilitate much easier reading. The manner in which
che development is presented has several other specific objectives: (1) to show
the Kaiman-knowledgable readers that the QD filter can be cast in matrix-vector
notation and that, despite the structural similarity, the QD theory is distinctly
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diffrentfrom the Kalman theory; and- (2)to provide a .,elf-contained 9Dfilter development which can be understood without-reference 1. The materialpresented In the last chapter on the extension and applications of the QD
filtei was not Included in reference 1 but nevertheless I's most significant.
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Notation J
In our development we will use the following notation: I
1 - Matrices ifn capital letters or matrix algebraic expressions inbrackets; 

i

2 - Column vectors in lower-case letters;

3 - Row vectors in lower case letters with a "T" superscript;

4 - Scalars, vector elements* matrix elements in lower case Greek letters;

5 - Minus one superscript for the inverse of a square matrix;

6 deSubscripts on derivative vectors denote the point in the span at which
the derivatives are evaluated;

7 - Subscripts will also be used to designate the components of partitioned
matriices and vectors;

8 - Estimates will be designated with a "hat" and predicted values with a
"bar"; and

9 - Superscripts in parentheses on derivative vectors' elements denote the 31ý
order of the derivative.

10 - Formula numbers with an asterisk are rewritten in Appendix I along with
the corresponding formulas of reference 1 whose numbers are given in
brackets.
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The Matrix-Vector formulation of the Classica_"
Constrained Least-Suares Curve Fitting Procedure

We will be fitting an N-th order polynomial to a span of (M+1 ) data
points x , O<m<M, 1>N, equally spaced with an interval b. Thejkw position
of the span ;ill contain the current (real-time) data point. For clearer
delineation we will use the notation of a truncated Taylor series expanded
about the point m-0 instead of a &polynomial with undetermined coefficients.
Accordingly, we write:

X X + mO ++ '+ ' X(N), -- (l)
0o o o , < 0,

where:

X - Smoothed estimates of the x, the M+l values of input data
m contained within the span,, 6MM

6- Estimates of the derivatives (parameters), 0qn<, evaluated

Given the x we wish to determine the values of the Ao which will minimise
the squared-error sum *

M A2
2 x_ 2 (2)t

m m m

In matrix-vector notation (1) and (2) are written as:

A A..

x-e = x - Ax0  (3)*

and

e e (x-x)- (x-x) (4)*



where:

X X
0 0

x- x1  ,(15) -- 1. ,(6) *•

A A

10 C,
'Cox Xo-X0

A 
AN

AO -- x

S"(N) A

. ''C -xM

1 0 0 0

1 h h h !
1T . . . hNT

(2h) 2  (2h)N
A 1 2h 79

I h (Nh)2  (Mh)M

The conditions for which 14 i a minimum are determined by the methods of
matrix calculus as follows:

T T
=-2(x-Sx) A -2A (x-x) 0. (10)*

5=
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Rearranging (10), substituting (3), and solving for the paraeter estimates
R0 gtves

Ax T AI

or^

A

x0 - [ATA]'ATx, (n)*
XOi

Substituting (11) into (3) we obtain tha. desired estimates R with the matrix-
vector formula for the classical unwe.ighted least-squares curve fitting
procedure, i.e.,

A [T -1AT
x A] A(AA Ax. (12)*

Now suppose we have the very practical sltuation that we require not
only some estimate Om, m 0 within the span, e.gr., the mid-point, but also
the derivative estimates 20, l<n<N. 9 Is given by the Taylor series (1)
after the parameter estimates *0 i--re obtained with (11). The derivative
estimates are obtained directly by successive differentietion of (1), i.e.,

A+ A_2^ NA
xm yo + + + (t) (N

A A A (~~N-1 (i
+,0 + . + .+N+ 4E: (13)*

(N) AM

In matrix-vector notation the system (13) becomes

A - o

X X (14) *
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d. It is an integraLion operator.

A A

1, - t

Substituting (11) into (14) gives the formula for evaluating the required
estimates,

A

C C(A TA] - A Tx. (17)*

The foregoing development has been presented to demonstrate our matrix-
vector notation in obtaining the familiar classical least-squares curve
fitting procedure. The constrtined procedure begins with the mathematical
specification of the "intercept" and "slope" constraints. The intercept
.parameter is % ana. the slope parameter is *0. When the constraints are
not applied, 0 and A0 are evaluated along with the reaining parameters
using (11). When the constraints are applied, 0 and *0 are obtained using
(14) with m-1, i.e.,

A

-O t.X0  (18)

where:

A A

X0(19) x ,(20)'C- .0 0Ct .0

7(N) _(N)
x0 x

The x0 are the parameter estimates obtained in the preceding computation step.
The 70 are the predicted values of the current parameter estimates which are
precisely the Xl obtained in the preceding computation step. We apply the
intercept and slope constraints by imposing the conditions:
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and x0 " (21)

Application of these particular constraints is Justified by physicalcon•iderations. If, for example, X0 and *0 are, respectively, estimatesof observed position and velocity components of a missile in flipht, theknown maximum acceleratioh must limit abrupt changes in position and velocity.Thus, the change of intercept and slope from one step to the next is
specified in the transition matrix 0 in (18).

We will now evaluate the remaining parameter estimates under theconstraint conditions (21). The first step is to partition A and x0 In (3)

X 

A-xO.AM(O) + 2  (22)

whe ie

A

X0 Nx
0  (23)

(%)

x0

•o(N)
0

0 0 0 0

h2 hNA [A 1 A2 ] 1 h"- h

1 2h (2h) 2  
( 2h)N1. 2"h 

(24)

I h. 
. .-
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From (22) we specify a new system:

A A A A

xc x-Al(Xo) 1  A2 (X0 ) 2  (25)

We observe that

A A A A A

(x-x) = (x-AI(x 0 )1-x+Al(x 0 )1 ) - (xc*xc) (26)

so that the sum of the squared errors can be Uritten

AT A

-(x-x) (X.-x. (27)cc cc•

Then

• ) .- 2(xc-c)TA - -2A2 (xc-xc) - 0. (28)*

A

Substituting (25) into (28) and solving for (X0 )2 gives

(x0 ) 2  - [A 2 TA2,) 'A2 Txc. (29)* -

Going back to (14) we can evaluate derivative estimates at any point within
the span:

A AA

x 4'x m (X0)1  m X0 mX 0  (30)*
AA

(xO2 0 :0
T -1 T

[A2 TA2 1-1 A2 x

In this constrained least-squares formulation the for the next step are
evaluated using (30) with mol,which implicitly imposes the conditions (21).
Also, with m-M, (30) provides the real-time derivative estimates.

10

iý



$ !'

It is important to note here that this constrained least-squares curve-
fitting procedure is inherently recursive because ol the very nature of the
intercept and slope constraints, i.e. ,using information obtained in the
preceding step to evaluate the estimates in the current step. It follows,
then, that the procedure-must be "initialized" with initial constraint values 4
which are consistent with subsequent data. Any appreciable inconsistency
generates an undesirable transient which will mask out the desired estimates i
until the transient "settles out". In practice, the initial constraints are
obtained with an unconstrained curve fit over the first 1*1 data points.

I
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Matrix - Vector Formulation of the OD Filter

The key to this development of the QD filter is an approximation
requiring reformulation of the conditions(28) which minimize Lhe sum ofa

the squared errors under the slope and intercept constraints. From (28)
we have

A TX A T A3)
2 c - A2 A2 (xO) 2.

From (25) and (26) we can write

x-AA(x 0 )1 -A2() 2+A2( )2  = 6x+A2() 2, (32)

where:A

At 6x - -I,(33)*
SxEx-A 1(x0)1-A2(xO)26  3)

Substituting (32) into (81) and rearranging gives

T TAA A A (34)*

where:

AA

0 (xO)2-(xO)2,(3

or ^ A

S)2 (xo) 2+x• ,36)

12



A
Solving (34) for the c•x0 gives

Ao AT2 1lA 8x (37)*

Substituting (37) into (36) gives

(x0) 2  (x 0) 2 + [A2TA2 1-1A2T x, (38)*

A

in which the unconstrained parameter estimates (x0) 2 are computed as
sums of the predicted values and corrections. Clearly, (38) bas no
computational advantage over (29) but was developed to provide a basis
for the QD approximation.

We observe in (33) that the 8x vector contains the last (14+1) input
data points, whereas the QD filter uses only the current data point. If
(38) wete used to evaluate the unconstrained parameter estimates, an x '
array would have to be retained to evaluate the 6x in each computing step.
An alternative procedure would be to retain a 6 x array which would have to
be shifted in each computing step as well as corrected :to take into account
the new values of parameter estimates. With this arrangement each input data
point makes a contribution through Sx to the evaluation of the parameter estimates.
?Moreover, each data point makes a contribution for (?4+l) consecutive computing
steps as it "passes through the filter". The QD alternative is to let each
data point make all of its (?+l) contributions during the current computing
step and drop the contributions of the other M data points. To implement this

reasoning we set each Sx element equal to the current element 8x*ý minus the sum
of the corrections it would receive as the filter processes the current and
subsequent M data points. For example, the mth element of Sx for a second-

order constrained filter would be

Sx 6 65i +(h2 SUHl) ' "(?A-r+l:) -h2•!w

m 2 2 OM 2 0,-" 2 .m-1

Sl~<,(39) 'A•

in which the 690 is the correction for the unconstrained parameter estimate
used to compute Ite correction for 6xm at the kth computing step after the
corresponding input data point entered the filter.Since each *0 k in (39)
can not be determined until the next M data roints, are processed: we will assume
their average value is 6XO, the parameter correction vector which is being evaluated
during the current computing step. Applying this assumption, (39) can be written
in the matrix-vector form:

13
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•x. • (2-)V , (40)

where:
(2h)() 11

2 2 ""° 2
(2) 2) 2  (•h) 2  12

C (41) v- 1 (42)
2 2

!2

2
2

2(14h) 22

o 0 *.. 0

Then for an N-th order polynominal fit (40) becomes

-x v=XM - C(8xo) 2  (43)*

where:

Cu [(C( 2 )v) (C( 3 v) * • • (C(Nv)] (44)

(N) hn (2h)n (yh) (45)
"nl" n-T n-T

(2h)" 0
nt

0 0

0 0 0



-^

In order to obtain an explicit expression for (Sx0)2 in this modified system,
(43) is substituted in (34) to get

T TA2T[v'xM- C(%X0) 2 1 = A2TA2 (Sx0)2 (46)

Solving (46) for ( )and substituting the result into (36) gives the QDj
unconstrained parameter estimates (T0)2:

(x0)2 (x•0 ) 2 + [A2 (C+A2 )]-A 2Tv)xM. (47)

Using (47) in (14) gives the derivatives' estimates for any point within the span:

A AA

*m 7m(0)0 *
0X) 0

-([0)2 A0

(•) 2+[A 2 T(c+A2 )J 1 A Tv•xi,

+ m T -1T
eXO+ 2 [A2 (C+A2)-A A2 vx, (48)

where: (mb) (2ih) 3  (Mh)2 31 •1

2
Ai (Mh~)

`2 0

I Mih

0 (49)

0 0 1

15
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if we set m-M we have the desired QD matrix-vector formulation

A

U= + wX,(50)

where:

2 M (A2 T(C+A2 ) 1 A2 1'v. (52)*

A

Sx- = real-time derivative estimates obtained in preceding
computing step.

x 6x (53)*

In the QD filter the intercept and slope constraints are applied by (52)
in which q effects only the corrections on the unconstrained parameters
(^ 0 ) to the real-time derivative estimates. (51) iswritten in several
alternate forms to show that the parameter estimates X0 evaluated at m-0
in the preceding step are implicitly contained in the QD formulation.

The smoothed QD outputs (iJe., those nearest the point of constraint)
are given by (14):

A .4fA

I M (54)*

so that the smoothed QD outputs are precisely the parameter estimates at
the point of constraint.

Extensions and Applications of the OD Vilter.

It is a very simple matter to mechanize the OD filter with a "variable
span" which is dynamically self-adjusting (i.e.,adaptive) to specified
properties of the current data. At WSMR, for example, the OD filter in the
flight safety program for PERSHING overilight support mentioned earlier uses
about a three-to-one variation in span length which automatically adjusts to
the current magnitude of the total acceleration, i.e.,the greater the accelera-
tion, the shorter the span. This feature effects a drastic reduction in velocity
overshoot because the span is at its minimum value during the "staging" of this
event. Although a little extra storage is required for the precomputed coefficients
for each span length, the program logic for this feature is still quite simple.

164
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It should be pointed out that variable span length can be adapted to almost
any type of filter. The adaptation to QD happens to be extremely simple.

Reference 1 includes a description of the DFX digital filter developed
by the writer in the- Summer of 1964. Except for the manner in which the
corrections for the unconstrained parameters are computed, QD and DFX
employ the same basic recursive philosophy. In the Spring of 1965 the
writer presented an informal paper to ti-e Data Reduction and Computer
Working Group of the Inter-Range Instrumentation Group at the Eastern Test
Range (AFETR). In addition to explaining the basic DFX theory, the paper
described an extremely effective technique for inserting independently
measured derivative information Into the filter performing its normal
filtering functions. More specifically, it was pointed out that measured,
velocity data could be simultaneously inserted into a DFX filter acceptirg"
radar position data to essentially eliminate such errors as "overshoot" at
motor burnout or other events generating abrupt changes in acceleration.
To do this, the QD or DFX predicted velocity estimate T1 is replaced directly
with the corresponding measured velocity component v so that the predicted
position estimate in a second order filter,

AA

x. + .~T+M) (55)

would be replaced by

A A

+ ~Jhv+) (56)

It may be argued that this procedure does not buy anything because the velocity
data are already available. This is an erroneous conclusion because, with
inserted velocity data, the filter span cab be significantly increased to
provide dramatic improvement in filtering the radar data with no increased
distortion of the true information in the radar data. In effect, then, the

-filter is operating on the difference between the rrajectory described by
the radar data and the trajectory described by th: integration of the velocity
data. This unique capability has not been used in pra-t1Le at WS1R because
suitable measured velocity data have not ,been available. The writer, however,
has tested this technique in a wide variety of simulated situations with
convincing results. This same improvement in performance has also been noted
when velocity data along with position data have been inserted into the
Kalman filter.

17
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At the APETR meeting in the Spring of 1965, the writer also described
how this technique could be extended to the insertion of acceleration data.
In filtering missile trajectqry data, for example, measured acceleration
data w obtained via telemetry can be inserted into the filter along with
the measured position data by replacing the predicted velocity formula

- TA~h~(57)

with

' + ha (58)M it

A special case of this accelerat1on data inbertion has been used very
successfully at WSMR for more than two years in the flight-safety support
program mentioned earlier. In this case, a burnout signal generated from
telemetered-data is made available to the real-time computer program.
When this burnout signal arrives the Vý components of the QD filters are
replaced by computed gravity components for the next several computingcycles. In other words, when the burnout event occurs, the QD filters

are forced to forget about acceleration history. This procedure essentially
eliminates the instantaneous impact prediction overshoot problem. This
procedure also suggests that much more effective filtering of radar data can be
obtained from a ballistic missile with negligible drag by inserting the
gravity components into the QD filters. 3

It should be pointed out here that, when velocity or acceleration
data are inserted into a QD filter, the smooth data formula (54) is no
longer valid because the-inserted data are arbitrary as far as the filter
is concerned. (54) is based on a constant N-th order derivative across
the filter spanwhich conditioai is obviously violated with the insertion of
arbitrary derivative data.

We have also experimented extensively with QD filter arrangements using
a simple deterministic mathematical model to generate the inserted acceleration
data. As in the Kalman filter, the effectiveness of this arrangement is highly
dependent on how well the trajectory generated by the model matches the measur-
ed trajectory. Feedback techniques have been used to force the measured
trajectory data to dynamically update (correct) the model coefficients. Includ-
ing a model with the QD filter can provide performance comparable to the Kalman
filter in relatively simple applications, e.g.,%n N-station radar data redgction.
When the application becomes complek, e.g.,the dozens of coefficients contained

I
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in a 6-degree of freedom model with both radar data and multichannel telemetrydata inputs, the systematic Kalman formulation may be the only way to arriveat a near optimum solution. In real-time applications, on the other hand, thecomputing efficiency of the QD filter with inserted derivative data will pro-vide performance comparable to the Kalman'filterwhich could not be used atall because of its excessive computing time.
From the foregoing discussion it is clear that the technique of inserting

derivative data into a QD filter along with the normal input data and the com-parison with Kalman performance is a new subject worthy of extensive investigationand is certainly beyond the scope of this report.

1
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APPENDIX I.

2 N A

x 0 +mh + . + (m)NA 0<(m 0 " 2 0 N" -oO<m-(

[ N (Qh)n o(n)
(4] nt nO 1 o 2,,, .. .M,NM<H.

n-0

* * * **

M *

2 2
S•( h n o (Xn (2)m- mu m

n A2

r 2
[3] ) (Xm-Xm) - Minimum.

A A
S~mul

x-e x Ax. (3)
AN fln

n=0

(X= T ( 3cx (Xx) (4)

M A

f 3] ~ (x -x) Minimum
m

A A

151rn- mxM) p a0 9N
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K0  (ATA] A x, 
(1

[9] A(j)- N06 -ajkSk' J=0, 1. . . .N.

-hn m

(7] aj n

km

[812 S, (jjm i -c

A A[AA-A. 
(12)

XibQ J0 ,2 . .+ m(N

([i)] 0~i (13)in
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A mA
x 0- (14)

A A(Jj (n(n) 0 ~ j 0,1 .. N[ 1 1x( i h )* *. . .M( 7

m [A A]A x

"(J 0028
Xi AAk

[121 b ih
m n-x jO j -,35...N

m m

(xO) 2 = [A2A 2 f ixc (29)

A N
[19] x6J a-jkCIC J 2, 3, . N..

[18] Mn -n I mj -hx0  m i+l
1= r1 rn1 rn-1
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A A AA

x - " n- x- (30)M v)i X0 - 0

T-

AAj A'A AxN.

N Aj~

A N

m mm2

T TA
A26 A2A2 x (34)

(3~]~ ~ - ~ j 2, 3. . . . N

nm23

6x x-,(,,~l - (33



i

dxo NO (O2(XO)2?35

[341 -6 i), , 2, 3, . . . N

T -
* *k * * *

A

6 x, LAjA 2  , A 2 5, (37)

N
[401 ()X- I -a

[39]-1 "- 2, 3, N. * N

Ma

*** . *

AT
( (X0)2 +A 26X (38)

(46] ^(J) -(J)~ C m01,.oN2

[463 (nj) x j Ot 19[(471 - * *

n-24

N2 (J) (h) "j



A (50

[691 )+ p - 2,o1,. . . N

n-p p - J for j - 2, 3.. .N

N M
[66] QJ - - n, - 2, 3,.. .N

hn-2M

tqjn ' ~ (qn
"n "n M n(64] q). 71 h- (.

p-r

&m 4D~ X0 0 X (51)

N n-:i
[301 ; 4 - h (n) iO- 0 Nn-i

0 2 [Aj (OMP)I Aiv (52)
pN

J69] (mh)n-i6 Q (n-j) ! n' p - 2 for j = 0, 1p p = j for j = 2, 3,.. .N

[66], [64] above
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*
a x HX (53)

[411 XM4~

.0 a I7N (54)
[51] XiJ: I (h-H~' (n) 919 N.

=-j (n-J)!' j =O , . . .

[NJ) N (-Mh)n'J AO.
Mal] =d (n , 0, 1,. .N

- n _n-j )! j - o , . . N]
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